A computational approach to developing cost-efficient adaptive-threshold algorithms for EEG neuro feedback

نویسنده

  • Eddy J Davelaar
چکیده

In electroencephalography (EEG) neurofeedback protocols, trainees receive feedback about the spectral power of the target brain wave oscillation and are tasked to increase or decrease this feedback signal compared to a predetermined threshold. In a recent computational analysis of a neurofeedback protocol it was shown that the placement of the threshold has a major impact on the learning rate and that placed too low or too high leads to no learning or even unlearning, respectively. However, the optimal threshold placement is not known in real-life scenarios. Here, these analyses were extended to assess whether an adaptive-mean threshold procedure could lead to faster learning curves. The results indicate that such a procedure is indeed superior to a fixed-mean procedure and that the distribution of asymptotic EEG power values converges to that obtained with the optimal-threshold procedure. Surprisingly, the adaptive-mean procedure leads to thresholds that are higher than the optimal one, which is explained through the increase in threshold lagging behind the increase in the likelihood of activation of the target neurons. To date, no computational model was used to compute the cost-efficiency of EEG neurofeedback procedures. The current simulation (within the specific reinforcement schedule) demonstrated a 35% reduction in training time, which could translate into sizeable financial savings. This study demonstrates the utility of computational methods in neurofeedback research and opens up further developments that tackle specific neurofeedback protocols to assess their real-life costefficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vacation model for Markov machine repair problem with two heterogeneous unreliable servers and threshold recovery

Markov model of multi-component machining system comprising two unreliable heterogeneous servers and mixed type of standby support has been studied. The repair job of broken down machines is done on the basis of bi-level threshold policy for the activation of the servers. The server returns back to render repair job when the pre-specified workload of failed machines is build up. The first (seco...

متن کامل

Reliability and Sensitivity Analysis of Structures Using Adaptive Neuro-Fuzzy Systems

In this study, an efficient method based on Monte Carlo simulation, utilized with Adaptive Neuro-Fuzzy Inference System (ANFIS) is introduced for reliability analysis of structures. Monte Carlo Simulation is capable of solving a broad range of reliability problems. However, the amount of computational efforts that may involve is a draw back of such methods. ANFIS is capable of approximating str...

متن کامل

Fraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms

The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...

متن کامل

Extending the Radar Dynamic Range using Adaptive Pulse Compression

The matched filter in the radar receiver is only adapted to the transmitted signal version and its output will be wasted due to non-matching with the received signal from the environment. The sidelobes amplitude of the matched filter output in pulse compression radars are dependent on the transmitted coded waveforms that extended as much as the length of the code on both sides of the target loc...

متن کامل

Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison

In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018